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ABSTRACT: Wearable sensors for human health, performance, and
state monitoring, which have a linear response to the binding of
biomarkers found in sweat, saliva, or urine, are of current interest for
many applications. A critical part of any device is a biological
recognition element (BRE) that is able to bind a biomarker at the
surface of a sensor with a high affinity and selectivity to produce a
measurable signal response. In this study, we discover and compare 12-
mer peptides that bind to neuropeptide Y (NPY), a stress and human
health biomarker, using independent and complimentary experimental
and computational approaches. The affinities of the NPY-binding
peptides discovered by both methods are equivalent and below the
micromolar level, which makes them suitable for application in sensors. The in silico design protocol for peptide-based BREs is
low cost, highly efficient, and simple, suggesting its utility for discovering peptide binders to a variety of biomarker targets.

■ INTRODUCTION

Sensors that measure the concentrations of biomarkers in
biofluids are of great interest for assessing health and cognitive
state.1−4 Among the fundamental challenges limiting the
development of these sensors is the discovery of biological
recognition elements (BREs) that are able to recognize and
bind to biomarker targets with high affinity and specificity to
detect low biomarker concentrations. Antibodies are currently
the BRE of choice, but they often function poorly in devices
because of their high cost, weak thermostability, short shelf life,
and issues with reproducibility.5

Human neuropeptide Y (NPY) is a highly conserved 36-mer
peptide (YPSKPDNPGEDAPAEDMARYYSALRHYIN-
LITRQRY) that functions as a neurotransmitter that is widely
distributed in the human central and peripheral nervous
systems.6 Recent clinical studies have shown that NPY plays an
essential role in the regulation of basic physiological effects,
including mood disorders, stress responses, and memory
processing.3,7 The NPY concentration in human biological
fluids is an important indicator in the diagnosis of depression,
anxiety, and stress-related disorders, including post-traumatic
stress disorder.8 The detection of NPY levels remains a
fundamental challenge for incorporation into wearable devices.
Traditional methods for NPY detection rely on complex, time-
consuming, and expensive assays using antibodies.1,9 Antibod-
ies against NPY can exhibit cross-reactivity when used as
sensing elements in microarrays, and the production process is
laborious and cost-ineffective. Moreover, antibodies are large

proteins with a short shelf life as a result of protein
denaturation, which limits their scope in biosensor develop-
ment.5,10

Short peptides2,4 are appealing as BREs because of their high
thermostability, strong selectivity, and low cost. In addition,
their small size places them in close proximity to the active
electronic or plasmonic material surface in sensors, greatly
decreasing the limit of detection.11 To date, most peptide-
based BREs are identified from natural sources12 or from
combinatorial phage display libraries,13 which determine
binders experimentally from large pools of sequences. The
identification of peptides from combinatorial libraries can be a
difficult experiment as it is subject to artifacts related to
parasitic sequences13 and sometimes yields peptides with low
binding affinities that are difficult to use in biofluid sensors.
We have been working to develop fast and automated

methods to design peptides with exceptional binding affinities
for protein or RNA targets.14−19 Our computational algorithm
uses atomistic force fields rather than knowledge-based
information to design peptide sequences; this enables us to
design high-affinity binding peptides to targets that have no
known binders available in the protein data bank. In recent
work, we used the computational algorithm to successfully
evolve a 12-mer peptide-based BRE for the detection of cardiac
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event biomarker protein troponin I (cTnI).17 The results
showed that the in silico-evolved peptide binds to cTnI with a
high affinity (0.27 nM), which is comparable to that of the
natural antibody (0.12 nM) for cTnI. Using plasmonic paper
detection, we found a detection limit of 10 fM (0.23 pg/mL), a
significant improvement over the commercial assays that
require a clinical lab and nearly 24 h to develop.
In this work, we use two different approaches, viz.

combinatorial phage display library and computational peptide
design algorithm, to identify high-affinity peptide-based BREs
for the detection of NPY in sensors. The binding affinities of
the phage display and in silico-discovered peptides were
characterized experimentally using bilayer interferometry
(BLI),20,21 surface plasmon resonance (SPR),22 and circular
dichroism (CD).23,24 Our results show that the in silico
peptide RNPQPMMWQMNW (N16) has an affinity equiv-
a l en t to tha t o f the phage -d i sp l ayed pep t ide
FPNWSLRPMNQM (N3) in binding with NPY. The binding
kinetic properties of peptides to NPY were evaluated by
experimentally measuring the association and dissociation
coefficients, ka and kd. The N16 peptide has more rapid NPY-
binding kinetics; so, the in silico-designed peptide might
perform better in sensors.

■ MATERIALS AND METHODS
The reagents for buffers were purchased from Sigma-Aldrich
and used without purification. Peptides with a CGGG linker
for SPR and biotinylated peptides with a GGG linker were
purchased from Peptide 2.0 and high-performance liquid
chromotography (HPLC)-purified to 95%.
Circular dichroism spectra were collected on a Jasco J-815

circular dichroism (CD) spectrometer using a 750 μL quartz
cuvette from 180 to 260 nm with a data pitch of 0.1 nm, a
bandwidth of 1 nm, and a scan rate of 50 nm/min and
averaged over three scans.
A BioNavis multiparametric surface plasmon resonance

(MP-SPR) Navi 210A instrument integrated with a degasser
and automated for six samples was used to measure NPY-
binding kinetics. Gold-coated SPR sensors purchased from
BioNavis were cleaned via UV-ozone treatment for 10 min,
heated in a 7.5:1:1 solution of water, 30% H2O2−NH4OH at
80 °C for 10 min, thoroughly rinsed with double deionized
water, and dried with N2. The clean gold-coated SPR sensors
were mounted in a sensor holder and inserted into an MP-SPR
instrument. For immobilization of NPY-binding peptides on
gold-coated SPR sensors, 500 μL of peptide at a concentration
of 50 μg/mL in deionized and filtered water was injected at a
flow rate of 30 μL/min using a prewait delay time of 2 min, a
10 min injection period of peptide or target, and a 2−40 min
postwait time to allow for peptide dissociation.
NPY binding to peptides was also measured using bilayer

interference (BLI) on a Fortebio Octet 96 spectrometer in 96-
well plates under constant agitation. The streptavidin-coated
sensors were equilibrated with biotinylated peptides, rinsed,
and dipped into wells containing different concentrations of
NPY. All BLI experiments were performed in phosphate-
buffered saline (PBS) buffer with 1% bovine serum albumin
and 0.002% Tween 20.
Computational Peptide Design Algorithm. Our

peptide design algorithm is an iterative procedure that searches
for high-affinity peptide binders to a target biomolecule.14,15,19

Figure S1 shows a flowsheet for the computational peptide
design algorithm. The algorithm is initialized by choosing a

reference peptide binder to the target and then determining
the initial structure of the peptide−target complex from the
PDB, crystallography, or atomistic molecular dynamics (MD)
simulation. The initial rotamers (side-chain conformations) for
amino acid repacking along the chain are taken from Lovell’s
rotamer library.25 Two types of trial moves, sequence change
and conformation change, are included in the algorithm to
generate new target-binding peptides. (i) Sequence change
move: there are two types of trial moves to change the peptide
sequence. The first is a random substitution of a new residue
for an old one. The new residue should be of the same residue
type as the old one to maintain the peptide’s hydration
properties. The second type of trial move is a random
exchange of two chosen residues, regardless of their residue
type. Each trial peptide is subjected to the Broyden−Fletcher−
Goldfarb−Shanno (BFGS) energy minimization to determine
optimal side-chain configurations for the amino acids along the
chain. (ii) Conformation change move: there are three types of
trial “moves” to change the peptide backbone conformation.
The first uses the extended concerted rotation method to
displace a series of consecutive residues in the middle of the
peptide chain, leaving the other residues fixed. The second
rotates a peptide fragment on one of the two ends (N- and C-
termini) and the third translates the entire peptide backbone
conformation. Two parameters, δmax and kTconformation, are used
to control the magnitude of the conformation change moves.
The root-mean-square deviation (RMSD), δrmsd, of the new
trial conformer from its original peptide conformation is
evaluated to make sure that it is not too big (<δmax) and not
too small (>δmin). The parameter kTconformation controls the
likelihood that a new peptide conformer will be accepted, with
higher values making acceptance easier. All attempts to
generate new peptide backbone conformers are considered as
long as (1) the torsion angles (ϕ and ψ) satisfy the
Ramachandran plot26 and (2) there are no atomic overlaps
between the peptide’s backbone and the target. Once trial
backbone conformers are generated, side chains are repacked
on the trial backbone conformers and BFGS energy
minimization is conducted to optimize their configurations.
The score Γscore of each trial peptide sequence or conformer is
evaluated, and the Monte Carlo Metropolis algorithm is used
to accept or reject the new trial peptide by calculating the
acceptance probability

= { [ Γ − Γ ]}P kTmin 1, exp ( )/score
old

score
new

The score function that we use to evaluate the merits of each
trial peptide in the computational algorithm is given in eq 1,
which takes into account the binding affinity of the peptide to
the target (first term) and the conformational stability of the
peptide when bound to the target (second term)16

λΓ = Δ + · +

+

− −

−

U U U

U

(

)

score binding peptide vdW
bound

peptide ELE
bound

peptide EGB
bound

(1)

The binding energy ΔUbinding is defined to be the difference
between the energy of the complex and the energies of the
peptide and the target prior to binding. The evaluation of
energies (U) of the complex, the peptide, and the target
involves the calculation of the internal energy, the van der
Waals energy, the electrostatic energy, the polar solvation
energy, and the nonpolar solvation energy. More detailed
descriptions about the calculation of the energy and score
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function can be seen in the Supporting Information and our
previous paper.15 Lower scores (more negative values) mean
better binders. All of the force field parameters are taken from
the Amber 14SB force field.27

The input for the computational designs is an initial binding
structure of the peptide−target complex, and several control-
lable parameter settings, such as the pH value, the value of
(δmax, kTconformation), the number of residues of each of the six
residue types (see below), and an initial random seed that
generates random numbers for the sequence and conformation
change moves. The computational algorithm cannot be used to
predict the active site of a target molecule. Our peptide design
is limited to cases in which (i) the active site of a target
molecule is known from the protein data bank or can be
predetermined using computational approaches, and (ii) an
initial peptide sequence is known.
Hydration Properties of in Silico Peptides. Since NPY

shows poor solubility at neutral pH, the peptide-binding
experiments are performed at pH = 5.0. Below pH = 6.0, the
polar histidine (His) is protonated, becoming a positively
charged amino acid (Hip) (Table S1). To be consistent with
the experimental data, our peptide designs are conducted at
pH = 5.0. If not specified, the letter “H” stands for the
positively charged histidine (Hip). The 20 natural amino acids
are classified into six residue types according to their
hydrophobicity, polarity, charge, and size (Table S1). The
length of the in silico-evolved peptides is set to be the same as
the phage-display-discovered peptide FPNWSLRPMNQM,
which has 12 residues: five hydrophobic residues (Nhydrophobic
= 5), no negatively charged residue (Nnegative charge = 0), one
positively charged residue (Npositive charge = 1), four hydrophilic
residues (Nhydrophilic = 4), two other residues (Nother = 2), and
no glycine (Nglycine = 0).
Explicit-Solvent Atomistic Molecular Dynamics Sim-

ulation. Explicit-solvent atomistic MD simulations are carried
out in the canonical (NVT) ensemble using the AMBER15
package with the force field ff14SB27 to examine the dynamics
of the binding process of peptides to NPY. The peptides
examined include one phage-display-discovered peptide N3
and four in silico-discovered peptides. The starting con-
formations of NPY complexed with the four evolved peptides
for the atomistic MD simulations are obtained from our
peptide design algorithm. Each peptide−NPY complex is
solvated in a periodically truncated octahedral box containing
an 8 Å buffer of TIP3P water28 (∼8000 water molecules)
surrounding the complex in each direction. Chloride counter-
ions (Cl−) are added to neutralize the system. Three
independent simulations are conducted for the peptide−NPY
complexes in 150 ns to ensure that our systems reach an
equilibrated state. K-means clustering analysis29,30 is performed
on the last 10 ns of the simulation trajectories to obtain
representative structures for these complexes in solution. Using
the implicit-solvent molecular mechanics/generalized Born
surface area (MM/GBSA)31 approach with the variable
internal dielectric constant model, we postanalyze the last 10
ns simulation trajectories of all of the peptide−NPY complexes
to calculate their binding free energies. Details of the
computational procedures can be found in our previous
work.14−19

Phage Display Discovery of NPY-Binding Peptide.
The deployment of biochemical sensors for biofluids has been
limited by the discovery of BREs for biomarkers of interest.
The phage display techniques for the peptide-based BRE

discovery and the challenges, as well as the limitations of this
approach, have been reviewed.32 In this study, we first utilized
the combinatorial phage display library to identify a promising
NPY-binding peptide FPNWSLRPMNQM termed as “N3” for
convenience. A measurement of the binding affinity of peptide
N3 to NPY was obtained by quartz crystal microbalance
(QCM); the experimentally measured disassociation constant
was Kd(QCM) = 23.9 μM.33

Modeling of NPY−Peptide Structure. As noted in the
section on the computational peptide design algorithm above,
an initial structure of NPY complexed with a model peptide is
required as input for the in silico discovery of peptide-based
BREs. Since the initial structure of the NPY−N3 complex is
not in the protein data bank, we used a molecular modeling
approach to identify the domains within NPY where peptide
N3 binds. The NMR solution structure of neuropeptide Y
(NPY) was obtained from the protein data bank (PDB code:
1RON).34 The conformation of (isolated) peptide N3 was
initially generated using the Rosetta ab initio fragment
assembly package.35 An ensemble of 200-folded structures
was then generated using replica exchange molecular dynamics
simulations in 200 ns at eight temperatures (277.15, 284.53,
292.11, 299.89, 307.88, 316.09, 324.51, and 333.15 K). The
conformation for the peptide−NPY complex was generated by
docking the folded peptide N3 with the NMR structure of
NPY in two steps. Rigid docking was performed using the
ZDOCK36 package with the default force field parameters, and
the generated structures were processed in Rosetta with the
flexible docking package. The refined complexes were scored
and ranked according to the Rosetta energy function. Table S2
shows the scoring energy for the five best conformations of
NPY with the peptide N3. Figure 1a shows the low-energy
structure for NPY bound to the peptide N3 that was used as
input for the in silico peptide evolution.

■ RESULTS

In Silico Evolution of NPY-Binding Peptides. We
performed four independent evolutions to ensure that the
computational algorithm samples peptides in a broad sequence
and conformation space. The four independent evolutions start
from random sequences and proceed along different searching
pathways that are controlled by setting distinct input
parameters, such as δmax and kTconformation. The first two
evolutions include sequence change moves only, while the last
two evolutions include both sequence and conformation
change moves. Figure 1b shows an example of the score vs
number of steps when only sequence changes are attempted. It
is clear that the score profile fluctuates considerably with the
number of evolution steps, indicating that this procedure
examines a significant range in sequence space. By examining
the score profile over the course of the evolution steps, we can
identify the lowest scores, which correspond to the best
peptide sequences for this search. Figure 1c shows an example
of the score vs number of steps when both sequence and
conformation changes are attempted at (δmax, kTconformation) =
(4.0, 4.0). It is clear that the peptide conformations experience
a sizeable variation in the RMSD profile, implying that the
search is accessing a broad conformational space. The score
profile associated with newly generated peptide conformations
fluctuates considerably and eventually gets down to an even
lower value than in the absence of conformation changes
(Figure 1b).
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The sequences of the four best-scoring peptides, viz. N16,
N17, N20, and N21, identified by in silico evolution are given
in Table 1. The peptides N16 and N17 result from sequence-
change-move-only searches at two distinct sets of random
number seeds, while the peptides N20 and N21 result from
cases where both sequence and conformation change moves
were attempted for (δmax, kTconformation) = (4.0, 4.0) and (5.0,
4.0), respectively. Figure 1d shows the structures of the in
silico peptides N16 and N20 bound to NPY that are obtained
via the computational algorithm. By comparing Figure 1a,d, we
can see that peptide N16 retains the same backbone
conformation as the original N3, but with a different residue
sequence draped on its backbone motif. Both the conformation

and sequence of peptide N20 are different from that of the
original N3.
Explicit-solvent atomistic MD simulations are carried out in

150 ns simulations to examine the dynamic properties of NPY
when bound to the phage-display-discovered peptide N3 and
to the four in silico-discovered peptides N16, N17, N20, and
N21. The motivation for these MD simulations is that the
target NPY is not allowed to move in response to the changes
of peptide sequence; so, we cannot guarantee that the in silico
peptides with the lowest scores have a higher affinity for NPY
than the original peptide N3. The last 10 ns simulation
trajectories of all of the peptide−NPY complexes are analyzed
to calculate their respective binding free energies (ΔGcal) using
the implicit-solvent MM/GBSA approach with the variable
internal dielectric constant model, as listed in Table 1. Our
simulation results reveal that the original peptide N3 exhibits a
good affinity to NPY with a low computed binding free energy
of −14.43 kcal/mol. (Note that the lower the value of ΔGcal,
the higher the binding affinity.) By comparison, three out of
the four in silico peptides, viz. N16, N17, and N21, are found
to have even lower binding free energies: −18.86 kcal/mol,
−16.83 kcal/mol, and −18.90 kcal/mol, respectively, suggest-
ing that the three in silico peptides may bind to the target NPY
with higher affinity than the original N3.
The effect of binding on the secondary structures of NPY

was examined using the VMD program suite.37 To compare
the structures of the bound peptides, we analyzed all of the
residues on NPY in the last 10 ns MD simulation trajectories
to obtain a probability distribution for the secondary structure
content along the 36 chain sites (Figure S2). K-means
clustering analysis29 is performed to obtain representative
structures of NPY alone in TIP3P water and when bound by
the peptides N3 and N16 in TIP3P water. Three primary
secondary structures: coil, turn, and α-helix, were observed for
NPY in both the free and bound states. In comparison with
free NPY (Figure 2), we found that when bound to NPY, the
peptides N3 and N16 do not cause a significant change in the
folded structure of NPY; instead, NPY (more or less)
maintains the same α-helix in the middle (A14−I31).

Figure 1. Computational peptide design algorithm is used to discover
high-affinity NPY-binding peptides. (a) Docking pose of the phage-
display-discovered peptide N3 on the 36-mer NPY is obtained using
the ZDOCK package. This docking pose is used as a starting
conformation in the algorithm to evolve other peptide binders. (b)
Sequence evolution proceeds with only sequence change attempts,
resulting in the best-scoring peptide N16. The fluctuation in the score
vs number of evolution step indicates the extent of variation of the
peptide sequence. (c) Sequence evolution proceeds with both
sequence and conformation change attempts at (δmax, kTconformation)
= (4.0, 4.0), resulting in the best-scoring peptide N20. Profile of
RMSD vs evolution step (red trace) indicates the extent of variation
of the peptide conformation. (d) Structures of the complexes N16−
NPY and N20−NPY are obtained via the computational peptide
design algorithm.

Table 1. Sequences of the Original Peptide N3 and the Four
Evolved Peptides, As Well As Their Corresponding Scores
and Binding Free Energies Obtained from the
Computational Algorithm and the Atomistic MD
Simulations, Respectively

peptide sequence Γscore (kcal/mol) ΔGcal (kcal/mol)

N3a FPNWSLRPMNQM −21.86 −14.43
N16b RNPQPMMWQMNW −32.58 −18.86
N17 RNPQPWTWWLTW −32.86 −16.83
N20c WQYMPMQWQRAQ −37.34 −3.34
N21 YNPQPMTMRYNW −36.12 −18.90

aThe peptide N3 was discovered using the phage display technique.
bThe peptides N16 and N17 result from the in silico evolution with
only sequence change attempts. cThe peptides N20 and N21 result
from the in silico evolution with both sequence and conformation
change attempts.

Figure 2. Last 10 ns MD simulation trajectories of NPY-only, NPY
+N3, and NPY+N16 complexes are analyzed to observe the secondary
structures of the 36-mer NPY in solution. The random coils are
colored in orange, the turns are in blue, and the α-helices are in pink.
The secondary structure content along with the sequence is shown to
facilitate a comparison of the structural changes of NPY when bound
to the two peptides.
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Experimental Validation of in Silico Binding Pep-
tides. The binding affinities for the phage display and in silico-
discovered peptides were measured using bilayer interferom-
etry (BLI)21 and surface plasmon resonance (SPR).22 The BLI
experiments were performed using biotin-labeled peptides with
GGG linkers on the amino terminus. The signals were
measured following exposure to concentrations of NPY
between 0.074 and 2.38 μM. The SPR experiments used
thiolated peptides with a CGGG linker on a gold surface.
Both BLI and SPR are sensitive to the changes in the

refractive index when the target molecules bind to the BRE
attached to the surface. In BLI, the reflected light from a probe
dipped in target solutions of varying concentrations will change
as the target binds to the surface. Under optimal conditions,
the reflected intensity will rise as the target binds and the time-
dependent signal change can be directly related to the
association constant ka. The signal then saturates as the system
reaches equilibrium. Finally, the dissociation coefficient kd can
be calculated from the time-dependent change in intensity as
the surface is washed with buffer.
Figure 3 shows the baseline-subtracted BLI data for the

peptides N3 and N16. In both cases, a rapid rise in signal was

observed upon exposure to NPY followed by a plateau as the
system comes to equilibrium. A return to the baseline signal is
observed after washing with buffer at 780 s due to dissociation
of the NPY. No rise in the BLI signal was observed for the in
silico peptides N17 and N21 under these conditions. It is

possible that the N17 and N21 are weaker peptide binders and
that signals could have been observed at higher NPY
concentrations, but we did not pursue these experiments.
The binding affinities can be determined, in principle, from

either the rate of change in signal intensity upon exposure to
NPY or the plateau signal intensity in either the BLI or SPR
experiments. The initial change in signal intensity can be fit to
a rising exponential given by

= − −R t R( ) (1 e )t k
eq

( / )obs

where R(t) is the observed signal, Req is the plateau value of the
observed intensity, and the observed association coefficient kobs
is related to the association and dissociation coefficients by

= [ ] +k k kNPYobs a d (2)

The slope of a plot of kobs vs [NPY] (not shown) gives ka,
the intercept gives kd, and the binding affinity Kd is given by
the ratio of kd/ka. The kd value can independently be
determined from a fit of the decrease in signal intensity
when the sample equilibrated with NPY is washed with buffer.
The buffer wash occurs at 780 s in the data shown in Figure 3.
The binding affinity can also be determined from the
equilibrium plateau value of the signal intensity Req in the
BLI or SPR experiments as a function of NPY concentration.
In this case, the plateau value Req is related to the maximum
change in R (Rmax) and the Kd as a function of NPY
concentration by

=
[ ]

+ [ ]
R

R
K

NPY
( NPY )eq

max

d (3)

The values for Kd and Rmax are obtained from a least-squares fit
of Req vs [NPY].
The BLI signal intensity for probes with the surface-attached

N3 and N16 peptides in Figure 3 shows large changes in the
BLI response with changing NPY concentrations, demonstrat-
ing that both peptides bind to NPY. The initial rise in intensity
is too rapid to be accurately fit by the kinetic equation, but the
data give an accurate measure of the equilibrium binding
plateau and the disassociation coefficient kd. Figure 4 shows
that the BLI plateau values give a good fit to the equilibrium
model, allowing us to determine the value for Kd. Although the
association kinetics are too fast to accurately measure by BLI at
these concentrations, we can directly measure the dissociation

Figure 3. BLI data (signal intensity R) for the peptides (a) N3 and
(b) N16 with increasing concentrations of NPY. Changes in signal
intensity are due to changes in refractive index as NPY binds to the
surface-attached peptide. The change in signal is proportional to the
amount bound, and changes to nonspecific binding have been
subtracted. After surface coating with the peptides, NPY was added at
480 s and buffer-washed starting at 780 s.

Figure 4. Equilibrium analysis of the BLI data (signal intensity R) for
the peptides N3 (red) and N16 (black). The value of Req was
determined from the plateau binding intensity as a function of NPY
concentration as shown in Figure 3.
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constant kd. Given that Kd and kd can be accurately measured,
the value for the association coefficient ka can be inferred from
the ratio of kd/Kd.
Table 2 shows the results of the kinetic and equilibrium

binding analyses for biotinylated N3 and N16 bindings to

NPY. The binding affinities for both peptides are below the
micromolar limit (N3: 0.59 ± 0.1 μM and N16: 0.64 ± 0.1
μM) and are very similar to each other. According to the
equation ΔG = −RT ln(Kd), we calculated the experimental
binding free energies, −8.49 and −8.44 kcal/mol, of the
peptides N3 and N6, respectively. By comparing the calculated
and experimentally measured binding free energies in Tables 1
and 2, we found that the values of ΔGcal (−14.43 and −18.86
kcal/mol) are lower than the values of ΔGexp (−8.49 and
−8.44 kcal/mol). The reason for this inconsistency is that we
neglect the enthalpic and entropic contributions from water.
This is a consequence of our use of the implicit-solvent MM/
GBSA approach with the variable internal dielectric constant
model to calculate the binding free energy of the peptide and
NPY. While the affinities are similar, the results show that the
N16 peptide has both faster association and dissociation with
NPY.
The secondary structure of the peptide−NPY complexes was

also evaluated by circular dichroism (CD) spectroscopy23 for
comparison with our atomistic MD simulation. Previous
studies have shown NPY to be partially folded in an α-helix,
with the helical content depending on the solvent, pH,
temperature, and the presence of lipid micelles.34,38 Figure 5

shows the CD spectra of NPY in the absence and presence of
the N3 and N16 peptides. For direct comparison with the NPY
conformation, the spectra from the free peptides have been
subtracted from the NPY−peptide mixture. The results for
NPY show the typical features expected from an α-helical
peptide, with negative peaks at 208 and 222 nm. No significant
changes are observed in the CD spectra of NPY in the
presence of N16, suggesting that the α-helix is maintained
during the binding event. The CD intensity increases in the
presence of N3, but there is no significant change in the

intensity ratio of 208−222 peaks that are a signature of α-helix
formation. Taken together, these data suggest that the binding
of N3 or N16 does not lead to loss in α-helical content, which
is consistent with our molecular dynamics simulations and the
structures shown above (Figure 2).

■ DISCUSSION
Our experimental and in silico results show that it is feasible to
identify peptide binders with high affinity to NPY using both
computational peptide design algorithms and phage display
combinatorial libraries. As noted in the literature, phage display
discovery can be experimentally challenging and time
consuming.32 Thus, it is reasonable to believe that our
computational protocols represent a significant advance in
the state-of-the-art since they are applicable to a wide variety of
experimental systems. The in silico discovery of target-binding
peptides will also be advanced further by improving our
computational resources in the future.
The initial binding affinity measurements using QCM

suggested that the phage display binding peptide N3 had a
low binding affinity (Kd(QCM) = 23.9 μM) for NPY and
therefore would not have been useful in sensors measuring
biologically relevant NPY concentrations.33 However, using
the high-sensitivity BLI device, we measured a much stronger
affinity for the N3 peptide (0.59 ± 0.1 μM). Our hypothesis is
that this discrepancy is a consequence of the lower sensitivity
of QCM39 compared to that of BLI. The resonant frequency of
the quartz crystal changes with the adsorbed mass as NPY
binds to a surface-attached peptide, and the concentration
ranges for the BLI experiments ([NPY] > 0.07 μM) are well
below those that can be measured by QCM. We believe that
the more sensitive BLI allows us to measure a binding mode
that is not accessible to QCM. To confirm this hypothesis, we
measured a binding affinity of N16 for NPY using an
independent method. The results from an SPR analysis
(Figure S3) also show a sub-micromolar affinity for NPY (Kd
= 0.25 μM).
While equivalent binding affinities were observed for the N3

and N16, we note that a significant difference is observed in
the association and dissociation kinetics. These differences
could have an important impact on sensor response since the
association rate determines the time required for signal
measurements and the dissociation rate is critical for sensor
regeneration.
Although the values of Kd for the peptides N3 and N16 are

below the micromolar range, they are significantly higher than
the concentration of NPY in human plasma (nM) and sweat
(pM).40 Recent studies have shown that such peptide-based
BREs can be useful for sensors. It has been reported that
peptide BREs with micromolar affinities can be used to create
sensors based on graphene transistors with a lower limit of
detection of 10 pM.33 We would therefore expect that the in
silico peptide N16 could be used as a drop-in replacement for
the N3. The more rapid association and dissociation kinetics
would be useful for the generation of the signal responses in
continuous monitoring sensors.
As with the phage display peptide, the in silico peptides

discovered by the computational algorithm must be validated
in experimental binding studies. Of the three in silico peptides
considered here, N16, N17, and N21, only the peptide N16
shows a good binding affinity to NPY. The in silico peptides
N17 and N21 are false positives in our computational designs
because they exhibit better affinities than the phage display

Table 2. NPY Kinetics and Binding Affinities for Surface-
Attached Biotinylated N3 and N16

ka (M
−1 s−1) kd (s

−1) Kd (μM) ΔGexp (kcal/mol)

bN3 3.2 × 103 1.9 × 10−3 0.59 ± 0.1 −8.49
bN16 7.1 × 103 4.6 × 10−3 0.64 ± 0.1 −8.44

Figure 5. CD spectra of NPY (blue) in solution and in the presence
of the 3-fold excess of the peptides N3 (red) and N16 (green). The
spectra of the free peptide have been subtracted for the N3 and N16.
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peptide N3 in the atomistic MD simulations but poorer
affinities in the experimental measurements. The peptide N17
is similar to N16 but contains two extra hydrophobic residues
tryptophan (W), giving N17 a low solubility in solution and
therefore making it difficult to test experimentally. The peptide
N21 does not have the solubility issue, but it fails to show a
proper response in the BLI NPY-binding experiments over the
micromolar concentration range. Thus, we consider N21 to be
either a weak binder or a nonbinder. One of the challenges in
our current algorithm for peptide-based BRE discovery is that
the in silico peptides with the best scores may not represent
the best experimental binders. Based on the feedback from
experiments, we will further improve the score function in
future work by introducing a peptide hydration term to address
the solubility issues, thus enhancing the performance of the
computational algorithm in designing good binding peptides.
An expression that describes a peptide’s hydration properties
given in Pawar’s work41 will be introduced and modified in our
work to avoid the designed peptides being overhydrophobic.

■ CONCLUSIONS

The discovery of peptide-based BREs for targets of interest for
monitoring human health remains a significant challenge. In
this study, we have combined the combinatorial phage display
technique with an in silico peptide design method to identify
high-affinity peptide binders for neuropeptide Y (NPY), a
biomarker for stress and cognitive performance.3,7 The
experimental results show that the in silico-evolved peptide
exhibits an affinity equivalent to the phage-display-discovered
peptide in binding with NPY but with more rapid kinetics. We
have shown previously with cardiac troponin I that the high-
affinity peptide-based BREs can be incorporated into optically
detected devices, including plasmonic paper, to enable very
low limits of detection.11,17 The results presented here show a
computational strategy to optimize peptide-based BREs for a
wide variety of biomarkers that could be incorporated into the
next generation of wearable sensors.
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